Abstract

AbstractThe splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable than acidic solutions for the complementary oxygen evolution half‐reaction. We show for the first time that amorphous molybdenum sulfide is a highly active hydrogen evolution catalyst in basic medium. The amorphous molybdenum sulfide catalyst and a Ni–Mo catalyst are then deposited on surface‐protected cuprous oxide photocathodes to catalyze sunlight‐driven hydrogen production in 1 M KOH. The photocathodes give photocurrents of −6.3 mA cm−2 at the reversible hydrogen evolution potential, the highest yet reported for a metal oxide photocathode using an earth‐abundant hydrogen evolution reaction catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.