Abstract
A novel enhanced photoelectrochemical (PEC) DNA biosensor, based on a compact heterojunction g-C3N4/MoS2 and co-sensitization effect with CdSe quantum dots (QDs), was first proposed for simple and accurate analysis of a short ssDNA. In this work, the g-C3N4/MoS2 was successfully synthesized and used as the electrode matrix material to construct PEC biosensor. 2D/2D heterojunction was formed between g-C3N4 and MoS2, which could promote the separation of photogenerated electron-hole pairs resulting in an enhanced photocurrent. In the presence of target DNA, CdSe QDs labeled reporter DNA was complementary pairing with target DNA which was specific recognized by capture DNA loading on self-assembled CdS QDs film, leading to close contact between CdSe QDs and g-C3N4/MoS2 modified electrode surface, thereby resulting in the enhanced photocurrent intensity due to the co-sensitization effect. Under the optimal operating conditions, the photoelectrochemical biosensor demonstrated favorable accuracy and could respond to 0.32 pM (S/N = 3) with a linear concentration range from 1.0 pM to 2.0 μM. Moreover, the proposed PEC DNA biosensor exhibits high sensitivity, excellent specificity, acceptable reproducibility and accuracy, showing a promising potential in DNA bioanalysis and other relative fields.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.