Abstract
This work focuses on the experimental optimisation of a newly developed photoelectrochemical system for the determination of chemical oxygen demand (PECOD). This method is developed based on a photoelectrochemical degradation principle. Chemical oxygen demand (COD) is directly quantified by measuring the amount of electron transferred at a TiO 2 nanoporous thin-film electrode during an exhaustive photoelectrocatalytic degradation process in a thin-layer photoelectrochemical cell. In this fashion, the COD value of a sample can be determined in a simple, rapid and accurate manner. The PECOD is a direct and absolute method that requires no calibration. The effects of important experimental conditions, such as light intensity, applied potential bias, supporting electrolyte concentration and oxygen concentration, on analytical performance have been investigated and optimum experimental conditions were obtained. Analytical linear range of 0−360 ppm COD with a practical detection limit of 0.2 ppm COD were achieved. Real sample analyses were also carried out. The results demonstrated that the measured COD values using the PECOD and the standard methods were in an excellent agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.