Abstract

The growing world population is closely associated with the increased demand of safe drinking water and sustainable energy production. This drives the focus of the scientific community to work toward water remediation and clean energy generation. The combination of photoelectrooxidation of pollutants at the anode with simultaneous hydrogen gas production at the cathode is a smart strategy to address these problems. Herein, we have designed a bifunctional photoelectrocatalytic system consisting of a self-standing photoanode to degrade the water pollutant molecules with simultaneous production of molecular hydrogen at the cathode. The photoanode was prepared by coating Bi2O3 over the surface of self-standing TiO2 nanorods. Thus, prepared photoelectrodes show high degradation efficiency for rhodamine molecules, where direct oxidation of rhodamine by the holes generated under solar light illumination was detrimental for its activity. During simultaneous pollutant removal and energy production experiments, the anode shows 100% degradation of pollutant molecules while the cathode shows high hydrogen gas production (128 mM cm–2 h–1). The prepared composite showed higher efficiency of visible-light absorbance, high charge generation capability, and low charge transfer resistance at the interface as determined via several characterizations, compared to the bare titania. The catalyst is easy to prepare and robust in activity for several kinds of pollutant molecules tested. Its robust activity, high stability, and durability open up an avenue for the wastewater treatment with simultaneous renewable energy production technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.