Abstract

Solar-driven conversion of CO2 and plastics into value-added products provides a potential sustainable route towards a circular economy, but their simultaneous conversion in an integrated process is challenging. Here we introduce a versatile photoelectrochemical platform for CO2 conversion that is coupled to the reforming of plastic. The perovskite-based photocathode enables the integration of different CO2-reduction catalysts such as a molecular cobalt porphyrin, a Cu91In9 alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The Cu27Pd73 alloy anode selectively reforms polyethylene terephthalate plastics into glycolate in alkaline solution. The overall single-light-absorber photoelectrochemical system operates with the help of an internal chemical bias and under zero applied voltage. The system performs similarly to bias-free, dual-light absorber tandems and shows about 10‒100-fold higher production rates than those of photocatalytic suspension processes. This finding demonstrates efficient photoelectrochemical CO2-to-fuel production coupled to plastic-to-chemical conversion as a promising and sustainable technology powered by sunlight. A versatile solar-driven hybrid photoelectrochemical platform has been developed for the simultaneous conversion of greenhouse gas CO2 and waste plastics into value-added fuels and chemicals with high efficiency and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call