Abstract

Copper–zinc–tin–selenide (Cu2ZnSnSe4, CZTSe) nanocrystals that do not contain any toxic elements and are 20–25nm in size are synthesized through a process involving reactions of the elemental sources in a polyetheramine solution. By controlling the Zn/Sn ratio, both n-type and p-type CZTSe nanocrystals could be synthesized. The photoelectrochemical (PEC) properties of electrodes formed using inks containing n-type and p-type CZTSe nanocrystals are compared. An aqueous solution of NaCl is used as the electrolyte. A PEC cell based on an n-type CZTSe photoanode exhibits an efficiency, ηc, of 2.81%, while a p-type cell exhibits ηc of 0.42%. The flat band potentials of the n-type and p-type CZTSe photoanodes in 1M NaCl are −0.55 and 0.48V, respectively. Finally, the net carrier concentrations of the n-type and p-type CZTSe photoanodes, calculated from their Mott–Schottky plots, are 3.38×1018 and 2.73×1018cm−3, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.