Abstract

Herein, a novel photoelectrochemical (PEC) aptasensor using gold nanoparticles@3,4,9,10-perylene tetracarboxylic (Au@PTCA) Schottky junction as the effective optoelectronic material and lead ion (Pb2+)-G quadruplex structure as the efficient quencher was constructed for the detection of Pb2+ with high sensitivity and excellent selectivity. Au@PTCA Schottky junction, which was proposed by the in situ reduction of Au NPs on the PTCA surface, exhibited a strong unidirectional conductivity, which could generate a significantly enhanced PEC signal compared with the pure PTCA. The Pb2+-G quadruplex structure with a large spatial hindrance effect was formed when the target Pb2+ was present owing to the occurrence of the specific recognition between Pb2+ and its aptamer S1. The formation of a Pb2+-G quadruplex structure effectively quenched the initial signal generated by the Au@PTCA Schottky junction, which was derived from restricted electron transport and light transmission. The obtained prominently decreased PEC signal could achieve the quantitative detection of Pb2+ from 0.5 pM to 500 nM, with a low detection limit of 0.17 pM. The preparation time of this PEC aptasensor was 13 h, and the time for PEC measurement depended on the illumination time, which switched off-on-off for 10 s-20 s-10 s. The study proposed here with high sensitivity and excellent selectivity for Pb2+ analysis offered a novel and reliable tool for environmental monitoring related to heavy metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.