Abstract
Abstract2D layered materials are currently one of the most explored materials in developing efficient and stable photoelectrocatalysts in energy conversion applications. Some of the 2D metal phosphorus chalcogenides (M2P2X6 or plainly MPX3) have been reported to be useful catalysts for water splitting. Herein, the photoresponsivity of a series of synthesized M2P2X6 (M2+ = Mn, Fe, Co, Zn, Cd; X = S, Se), tested for the oxygen evolution reaction (OER) region in alkaline media, with excitation wavelengths from 385 to 700 nm, is reported. The experimentally determined optical bandgaps of the MPX3 materials range from 1.5 eV for FePSe3 to 3.7 eV for ZnPS3. At +1.23 V versus reversible hydrogen electrode (RHE), the photoelectrochemical (PEC) activity in the OER region of MnPSe3 exhibits superior performance, while the exfoliation of CoPS3 improves its PEC activity up to double in contrast with its bulk counterpart. The influence of the substrate (glassy carbon (GC), indium tin oxide (ITO), and aluminum‐doped zinc oxide (AZO)) and applied potential is also studied. Exfoliated CoPS3 reaches a photoresponsivity of up to 0.6 mA W‐1 under 450 nm excitation wavelength and at +1.23 V versus RHE in alkaline electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.