Abstract

The efficiency of photoelectrocatalytic (PEC) water splitting is limited by the serious recombination of photogenerated charges, high overpotential, and sluggish kinetics of surface reaction. Herein we describe the recent progress on engineering the electrode–electrolyte and semiconductor–cocatalyst interfaces with cocatalysts, electrolytes, and interfacial layers (interlayers) to increase the PEC efficiency. Introducing cocatalysts has been demonstrated to be the most efficient way to lower the reaction barrier and promote charge injection to the reactants. In addition, it has been found that electrolyte ions can influence the surface catalysis remarkably. Electrolyte cations on the surface can influence the water splitting and backward reactions, and anions may take part in the proton transfer processes, indicating that fine-tuning of the electrolyte parameters turns out to be an important strategy for enhancing the PEC efficiency. Moreover, careful modification of the interface between the cocatalysts ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call