Abstract

Photoelectrocatalytic oxidation of methanol, ethylene glycol, glycerol, and 5,6,7,8-tetrahydro-2-naphthol on thin-film nanocrystalline hematite electrodes fabricated by electrochemical deposition and promoted with spin-coated titanium has been studied. It is shown that the modification of hematite transforms it into material exhibiting high activity in the photoelectrochemical process of substrate oxidation upon illumination with light in the visible region of the spectrum. The highest activity is observed in the reaction of photoelectrocatalytic oxidation of glycerol. Results of intensity-modulated photocurrent spectroscopy (IMPS) suggest that the effect is due to an increased rate of charge transfer in the process of photoelectro-oxidation and efficient suppression of the recombination of generated electron-hole pairs. Therefore, thin-film photoanodes based on modified hematite are promising for practical application in the photooxidation of glycerol, a by-product of biofuel production, as well as in the photoelectrochemical degradation of other organic pollutants, including those formed during the production of pharmaceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call