Abstract

Photoelectrical properties of Tl1-xIn1-xSnxSe2 single crystalline alloys (x = 0, 0.1, 0.2, 0.25) grown using the Bridgman-Stockbarger method were studied. The temperature dependence of electrical and photoconductivity for the Tl1-xIn1-xSnxSe2 single crystals was explored. It has been established that photosensitivity of the Tl1-xIn1-xSnxSe2 single crystals increases with x. The spectral distribution of photocurrent in the wavelength spectral range 400-1000 nm has been investigated at various temperatures. Photoconductivity increases in all the studied crystals with temperature. Therefore, thermal activation of photoconductivity is caused by re-charging of the photoactive centers as the samples are heated. Based on our investigations, a model of center re-charging is proposed that explains the observed phenomena. X-ray photoelectron valence-band spectra for pristine and Ar(+)-ion irradiated surfaces of the Tl1-xIn1-xSnxSe2 single crystals have been measured. These results reveal that the Tl1-xIn1-xSnxSe2 single-crystal surface is sensitive to the Ar(+) ion irradiation that induced structural modification in the top surface layers. Comparison on a common energy scale of the X-ray emission Se Kβ2 bands representing energy distribution of the Se 4p-like states and the X-ray photoelectron valence-band spectra was done.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.