Abstract
Applying multiphase systems in microreactors leads to an intensification of heat and mass transport. Critical aspects of the well-studied segmented slug-flow, such as bubble generation and pump control, can be automated, provided a robust sensor for the reliable determination of velocity, phase lengths, and phase ratio(s) is available. In this work, a fast and low-priced sensor is presented, based on two optical transmission sensors detecting flow characteristics noninvasively together with a microcontroller. The resulting signal is mainly due to refraction of the bubble-specific geometries as shown by a simulation of light paths. The high performance of the processing procedure, utilizing the derivative of the signal, is demonstrated for a bi- and triphasic slug flow. The error of <5% is entirely reasonable for the purpose envisaged. The sensor presented is very fast, robust, and inexpensive, thus enhancing the attractiveness of parallelized capillary reactors for industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.