Abstract

The capacitive photovoltage and photoconductivity spectra of GaAs/InAs heterostructures with quantum dots is discussed. For these structures, which were fabricated by metallorganic gas-phase epitaxy, the photosensitivity spectrum has a sawtoothed shape in the wavelength range where absorption by the quantum dots takes place, which is characteristic of a δ-function-like density of states function. The spectra also exhibit photosensitivity bands associated with the formation of single-layer InAs quantum wells in the structure. An expression is obtained for the absorption coefficient of an ensemble of quantum dots with a prespecified size distribution. It is shown that the energy distribution of the joint density of states, the surface density of quantum dots, and the effective cross section for trapping a photon can all be determined by analyzing the photosensitivity spectrum based on this assumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call