Abstract

The physical techniques of polarizing microscopy, including the quantitative measurements of small optical retardations, have been used to investigate elastic fields adjacent to short carbon fibres in epoxy resin composites. The elastic fields associated with shear stress distribution along the fibre-matrix interface have been employed to monitor the initiation of interface debonding during hot (100 °C) water uptake. By examining the development of stress birefringence during resin swelling in the resin adjacent to individual fibres, the differences in the durability of interfacial bonding and the fibre failure modes for differently coated fibres have been obtained. The results show that the state of self-stress in model composites, comprising a single carbon fibre in a film of epoxy resin, can, by immersion in hot distilled water, be enhanced to such an extent that the axial tension in the fibre can be sufficient to initiate fibre fracture. The results also show that, for fibres that have been given certain proprietary surface treatments, the fibre fractures by different failure modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.