Abstract

The mechanism of very efficient relaxation of the melanin-photoexcited states, responsible for the photoprotective action of the pigment, remains a subject for intense investigation. The most recent study by C. Grieco, F. Kohl, and B. Kohler, entitled "Ultrafast radical photogeneration pathways in eumelanin," addresses key issues of melanin photophysics and photochemistry. By using femtosecond broad-band pump probe-transient absorption measurements, the researchers were able to identify the absorption spectrum of DOPA melanin radicals for the first time and proposed two distinct mechanisms of radical formation-photoionization and photoinduced charge separation. The observed photodynamic of melanin radicals suggests a new paradigm in which the ultrafast excited state deactivation is due to the efficient recombination of melanin radicals created promptly by photoexcitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.