Abstract

Breast cancer is conventionally treated by surgery and radiotherapy, with adjuvant chemotherapy and hormonotherapy as supplementary treatments. However, such treatments are associated with adverse side effects and drug resistance. In this study, Pheophorbide a (Pa), a photosensitizer isolated from Scutelleria barbata, was analysed for its antiproliferative effect on human breast tumour cells. The IC (inhibitory concentration)(50) of the combined treatment of Pa and photodynamic therapy (Pa-PDT) on human breast tumour MCF-7 cells was 0.5 µm. Mechanistic studies in MCF-7 cells demonstrated that Pa was localized in the mitochondria, and reactive oxygen species were found to be released after Pa-PDT. Apoptosis was the major mechanism responsible for the tumour cell death, and mitochondrial membrane depolarization and cytochrome c release highlighted the role of mitochondria in the apoptotic mechanism. Up-regulation of tumour suppressor protein p53, cleavage of caspase-9 and poly (ADP-ribose) polymerase suggested that the caspase-dependent pathway was induced, while the release of apoptosis-inducing factors demonstrated that the apoptosis was also mediated by the caspase-independent mechanism. In vivo study using the mouse xenograft model showed a significant inhibition of MCF-7 tumour growth by Pa-PDT. Together, the results of this study provide a basis for understanding and developing Pa-PDT as a cure for breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.