Abstract

Photodynamic therapy (PDT) of non-melanoma skin cancers currently carries failure rates of 10-40%. The optimal irradiation protocol is as yet unclear. Previous studies showed profound immunosuppression after PDT, which may compromise immune-mediated clearance of these antigenic tumors. Slower irradiation prevents immunosuppression in mice, and may be at least as effective as high-fluence-rate PDT in preliminary clinical trials. The photosensitizers 5-aminolaevulinic acid and/or methyl aminolaevulinate were applied to discrete areas on the backs of healthy Mantoux-positive volunteers, followed by narrowband red light irradiation (632 nm) at varied doses and fluence rates. Delayed type hypersensitivity (Mantoux) reactions were elicited at test sites and control sites to determine immunosuppression. Human ex vivo skin received low- and high-fluence-rate PDT and was stained for oxidative DNA photolesions. PDT caused significant, dose-responsive immunosuppression at high (75 mW cm(-2)) but not low (15 or 45 mW cm(-2)) fluence rates. DNA photolesions, which may be a trigger for immunosuppression, were observed after high-fluence-rate PDT but not when light was delivered more slowly. This study demonstrates that the current clinical PDT protocol (75 mW cm(-2)) is highly immunosuppressive. Simply reducing the rate of irradiation, while maintaining the same light dose, prevented immunosuppression and genetic damage and may have the potential to improve skin cancer outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.