Abstract

The development and application of curcumin-mediated antimicrobial photodynamic techniques (PDT) in food preservation are highly anticipated to resist microbial contamination and prevent food spoilage. In this study, high-utilization curcumin-loaded bilayer nanoencapsulation was prepared to incorporated into a gelatin-based edible coating for beef preservation. Bilayer nanoencapsulation composed of shellac and poly-γ-glutamic acid (CS-NPs) improved the encapsulation efficiency of shellac to curcumin by >1.5 times. The incorporation of CS-NPs improved the compact of coating structure with hydrogen bonds. In food simulants, coatings possessed control release properties and the release mechanism was Fick diffusion (without the addition of γ-PGA) and non-Fick diffusion (with the addition of γ-PGA). These prepared coatings exhibited excellent barrier, antibacterial (antibacterial ratio > 95 %), and antioxidant properties (scavenging ratio > 90 %). Curcumin mediated antimicrobial photodynamic techniques (PDT) of the coatings were verified with the activity of blue light-induced reactive oxygen species (ROS). The shelf-life of beef was extended by the coating with blue light. In summary, the design of bilayer CS-NPs significantly improved the utilization of curcumin which provided a high-efficiency strategy for PDT-responsive food packaging with environmental practical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call