Abstract

Biofilm-associated diseases account for 80% of all infections in humans. Due to the emergence of antibiotic resistances, alternative therapies such as Photodynamic Inactivation (PDI) of microorganisms have emerged. Porphyrins with intrinsic positive charges have been proposed as successful photosensitizers (PSs) against microorganisms. We have recently designed the new synthetic porphyrin 5,10,15,20-tetrakis[4-(3-N,N-dimethylammoniumpropoxy)phenyl]porphyrin (TAPP) containing four basic amine groups in the periphery of the tetrapyrrolic macrocycle, which can acquire positive charges at physiological pH, thus favouring the interaction with biomembranes.Illumination of planktonic cultures of Staphylococcus aureus at 180J/cm2 in the presence of 2.5μM TAPP induced complete bacteria eradication.For the TAPP-PDI treatment of S. aureus biofilms, higher light fluences and PS concentrations were needed. Employing 20μM TAPP and 180J/cm2, around 3-log CFU reduction were obtained.In order to determine the efficacy of TAPP-PDI on Gram-negative bacteria, we performed planktonic and biofilm assays employing Pseudomonas aeruginosa. Much higher TAPP doses as compared to S. aureus were needed to achieve planktonic bacteria photosensitization (3-log CFU reduction at 20μM TAPP and 180J/cm2). On the other hand, high concentrations of TAPP were nontoxic to P. aeruginosa growing on biofilms, and employing 30μM TAPP and 180J/cm2 we obtained 3-log CFU reduction.The main conclusion of the present work is that TAPP is a promising and efficient PS capable of promoting photodynamic killing of both Gram-negative and -positive in planktonic bacteria, though more effectively in the latter. In addition, TAPP-PDI induces similar photoinactivation rates in both bacteria types growing on biofilms, with lower dark toxicity in the Gram-negative one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.