Abstract

This study sheds light on how to rationally design efficient photodynamic antimicrobial chemotherapy (PACT) agents by covalently linking phthalocyanines (Pcs) as photosensitizers with an antibiotic: Ciprofloxacin (CIP). Pcs used are zinc (II) 3-(4-((3,17,23-tris(4-(Benzo(d)thiazol-2-yl] thiol) phthalocyanine-9-yl) oxy) phenyl) propanoic acid (1) and zinc (II) 3-(4-(3,17,23-tris(3-(4-(triphenylphosphine) butyl) benzo[d]thiazol-3-ium bromide phthalocyanine-9-yl) oxy) phenyl) propanoic acid (2). High singlet oxygen quantum yields are observed in the presence of CIP. Square wave voltammetry was used to analyse the Pc-CIP uptake by bacteria biofilms of Streptococcus pneumoniae (S. pneumonia) and Escherichia coli (E. coli). Electrochemical impedance spectroscopy and scanning electron spectroscopy were used to study the stability of the biofilms in the presence Pc-CIP complexes and when exposed to light. Raman and time of flight-secondary ion mass spectrometry (TOF-SIMS) are used to identify the breakdown of cellular components of the biofilm and penetration of the Pc-CIP into the biofilms, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call