Abstract

In this study, we synthesized nitrogen-doped carbon dots (N-CDs) with remarkable photodynamic antibacterial properties by a hydrothermal method. The composite film was prepared by solvent casting method, compounding N-CDs with chitosan (CS). The morphology and structure of the films were analyzed by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) techniques. The films' mechanical, barrier, thermal stability, and antibacterial properties were analyzed. A preservation test of the films was studied on the samples of pork, volatile base nitrogen (TVB-N), total viable count (TVC), and pH were determined. Besides, the effect of film on the preservation of blueberries was observed. The study found that, compared with the CS film, the CS/N-CDs composite film is strong and flexible, with good UV light barrier performance. The prepared CS/7 % N-CDs composites showed high photodynamic antibacterial rates of 91.2 % and 99.9 % for E. coli and S. aureus, respectively. In the preservation of pork, it was found that its pH, TVB-N, and TVC indicators were significantly lower. The extent of mold contamination and anthocyanin loss was less in the CS/3 % N-CDs composite film-coated group, which could greatly extend the shelf life of food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.