Abstract

Although ion-interference therapy (IIT) has become an intriguing option for cancer treatment, the generation of interference ions on-demand remains a challenge. Herein, a nanoplatform based on hierarchically mesoporous metal-organic frameworks (HMMOFs) is adopted to integrate black phosphorus quantum dots (BPQDs) and meso-tetra(4-carboxyphenyl) porphine (TCPP) to realize controllable phosphate anions (PAs) production in a specific cancerous region for IIT. The uniform large mesopores of HMMOFs could guarantee the selective screening and immobilization of ultra-small and monodispersed BPQDs. The TCPP in microporous domains of HMMOFs could effectively produce 1 O2 , which not only serves as photosensitizer for photodynamic therapy (PDT), but also switches on the release of PAs from BPQDs in the adjacent mesoporous domains to trigger the concomitant synergetic IIT. The elaborated nanoplatform (BP@HMUiO-66-TCPP) presents good biocompatibility, biodegradability as well as enhanced synergetic therapeutic effects. In murine models treated with BP@HMUiO-66-TCPP, the tumor inhibition rate is as high as ≈98.24% as compared to that of the control group after 14 days treatment. Moreover, the tumor volumes in the synergetic group are only 19.6% of those in the PDT alone treated group. Such a concept of exogenous photo-controlled synergistic therapeutics might be extended to a broad range of IIT for an improved antitumor efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.