Abstract
Porphyrin-based metal organic frameworks (MOFs) with efficient bactericidal performance have increasingly attracted attention in photodynamic inactivation materials. However, low reactive oxygen species (ROS) yield and drug residue hazards of current porphyrin-MOFs materials lead to unsatisfactory clinical therapeutic effects. In this paper, carbon quantum dots (CQDs) were encapsulated into PCN-224, which enhanced the photodynamic activity of the MOFs through fluorescence resonance energy transfer (FRET) process. Singlet oxygen (1O2) detection confirmed that the photodynamic activity of CQDs-doped PCN-224 (CQDs@PCN-224) was enhanced than that of pristine PCN-224 under illumination. Furthermore, the CQDs@PCN-224 were firmly embedded into bacterial cellulose (BC) nanofibrous membranes by using an eco-friendly biosynthetic approach, efficiently preventing MOFs leakage during use. The results of bactericidal assays demonstrated that BC/CQDs@PCN-224 membrane with higher photodynamic activity causes more severe disruption to bacterial structure and possesses better antibacterial efficiency (>99.99 % reduction of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli O157:H7 within 30 min) than BC/PCN-224 membrane under visible light illumination (500 W, 15 cm height, λ ≥ 420 nm). In addition, the biosynthesized BC/CQDs@PCN-224 membrane showed good hemocompatibility and low cytotoxicity, revealing that the BC- and MOFs-based material with enhanced PDI efficiency and satisfying safety has great potential in medical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.