Abstract

Absorption of solar radiation of wavelengths between 175 to 205 nm plays a fundamental role in the photochemistry of the middle atmosphere. Nitric oxide photodissociates in the δ(0-0) and δ(1-0) bands near 191 and 183 nm, respectively, initiating the primary mechanisms for NOx removal in the middle atmosphere. The spectrally rich Schumann-Runge (S-R) bands of O2 are the main source of atmospheric opacity at these wavelengths. A re-evaluation of O2 absorption has been made based on recent advances in understanding of S-R line shapes, leading to differences with conventional approaches assuming Voigt line profiles in line-by-line calculations of the O2 cross section. The new results are used to examine the impact of O2 transmission on the photodissociation of NO in the δ(0,0) and δ(1,0) bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.