Abstract
The photochemistry of mass selected CO(2) (-)(H2O)(m), m=2-40 cluster anions is investigated using 266 nm photofragment spectroscopy and theoretical calculations. Similar to the previous 355 nm experiment [Habteyes et al., Chem. Phys. Lett. 424, 268 (2006)], the fragmentation at 266 nm yields two types of anionic products: O(-)(H2O)(m-k) (core-dissociation products) and CO(2) (-)(H2O)(m-k) (solvent-evaporation products). Despite the same product types, different electronic transitions and dissociation mechanisms are implicated at 355 and 266 nm. The 355 nm dissociation is initiated by excitation to the first excited electronic state of the CO(2) (-) cluster core, the 1 (2)B(1)(2A") state, and proceeds via a glancing Renner-Teller intersection with the ground electronic state at a linear geometry. The 266 nm dissociation involves the second excited electronic state of CO(2) (-), the 2 (2)A(1)(2A') state, which exhibits a conical intersection with the 3 (2)B(2)(A') state at a bent geometry. The asymptotic O(-) based products are believed to be formed via this 3 (2)B(2)(A') state. By analyzing the fragmentation results, the bond dissociation energy of CO(2) (-) to O(-)+CO in hydrated clusters (m> or =20) is estimated as 2.49 eV, compared to 3.46 eV for bare CO(2) (-). The enthalpy of evaporation of one water molecule from asymptotically large CO(2) (-)(H(2)O)(m) clusters is determined to be 0.466+/-0.001 eV (45.0+/-0.1 kJ/mol). This result compares very favorably with the heat of evaporation of bulk water, 0.456 eV (43.98 kJ/mol).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.