Abstract

The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl–Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call