Abstract

In this article, the structures and energies of CF3COCl in the low-lying electronic states have been determined by SA-2-CAS(8,7)/6-31G* and SA-2-MSPT2(8,7)/6-31G* calculations, which include equilibrium geometries, transition states, and three minimum-energy conical intersections (CI-1, CI-2, and CI-3) between S0 and S1 states. The AIMS method was used to carry out non-adiabatic dynamic simulations with the ab initio calculation performed at the SA-2-CAS(8,7)/6-31G* level. Upon irradiation to the S1 state, CF3COCl first relaxes to S1 minimum and then overcomes the ∼10 kcal/mol (TSS1_CCl) or ∼30 kcal/mol (TSS1_CO) barrier to the conical intersection region CI-1 or CI-3 (minor), with the S1 → S0 transition probability of 63:1. After non-adiabatic transition to the S0 state through CI-1, trajectories mainly distribute to three different reaction pathways, with one going back to S0 minimum through shortening of the C-Cl bond, the other forming CF3CO and Cl radicals by continuous elongation of the C-Cl distance, and another dissociating into CF3 + CO + Cl and running into the CI-3 region through elongation of C-C and C-Cl distances. Moreover, we found that the trajectories would recross to the S1 state with the recrossing probability of 13.9% through the CI-3 region due to the extremely sloped topographic character of CI-3. On the basis of time evolution of wavefunctions simulated here, the product ratio of CF3 + CO + Cl and CF3CO + Cl is 53.5%:18.4%, which is consistent with the experimental value of 3:1. We further explain the photo-dissociation wavelength dependence of CF3COCl, and the product ratio of CF3 + CO + Cl increases with the increase in total energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.