Abstract
The photodissociation dynamics of methylamine (CH3NH2) upon excitation in the blue edge of the first absorption A-band, in the 198-203nm range, are investigated by means of nanosecond pump-probe laser pulses and velocity map imaging combined with H(2S)-atom detection through resonance enhanced multiphoton ionization. The images and corresponding translational energy distributions for the H-atoms produced show three different contributions associated with three reaction pathways. The experimental results are complemented by high-level abinitio calculations. The potential energy curves computed as a function of the N-H and C-H bond distances allow us to draw a picture of the different mechanisms. Major dissociation occurs through N-H bond cleavage and it is triggered by an initial geometrical change, i.e., from a pyramidal configuration of the C-NH2 with respect to the N atom to a planar geometry. The molecule is then driven into a conical intersection (CI) seam where three outcomes can take place: first, threshold dissociation into the second dissociation limit, associated with the formation of CH3NH(Ã), is observed; second, direct dissociation after passage through the CI leading to the formation of ground state products; and third, internal conversion into the ground state well in advance to dissociation. While the two last pathways were previously reported at a variety of wavelengths in the 203-240nm range, the former had not been observed before to the best of our knowledge. The role of the CI and the presence of an exit barrier in the excited state, which modify the dynamics leading the two last mechanisms, are discussed considering the different excitation energies used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.