Abstract

The theoretical prediction and experimental confirmation of the 1πσ* repulsive excited state along O-H bond of phenol have large impact on the interpretation of phenol and tyrosine photochemistry. In this work, we investigated the photodissociation dynamics of 2-, 3-, and 4-methoxybenzoic acid (MOBA) in a molecular beam at 193 nm using multimass ion imaging techniques. In addition, the ground state and the excited state potential energy surfaces of MOBA were investigated using ab initio calculations, and branching ratios were predicted by Rice-Ramsperger-Kassel-Marcus theory. The results show that (1) the excited state potential of 1πσ* along O-CH(3) bond remains similar to that of phenol and anisole, (2) CH(3) elimination is the major channel for three MOBA isomers, and (3) photofragment translational energy distributions show bimodal distributions, representing the dissociation on the ground state and repulsive excited state, respectively. Comparison to the study of hydroxbenzoic acid [Y. L. Yang, Y. A. Dyakov, Y. T. Lee, C. K. Ni, Y. L. Sun, and W. P. Hu, J. Chem. Phys. 134, 034314 (2011)] shows that only the intramolecular hydrogen bonding has significant effects on the excited state dynamics of phenol chromophores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.