Abstract

The photodissociation dynamics of CBr4 at 267 nm has been studied using time of flight (TOF) mass spectrometry and ion velocity imaging techniques. The photochemical products are detected with resonance enhanced multiphoton ionization (REMPI) as well as single-photon vacuum ultraviolet ionization at 118 nm. REMPI at 266.65 and 266.71 nm was used to detect the ground Br(2P32) and spin-orbit excited Br(2P12) atoms, respectively. The translational energy and angular distributions are consistent with direct dissociation from an excited triplet state and indirect dissociation from high vibrational levels on the singlet ground state surface. Br2+ ions are also observed in the TOF spectra with a focused 267 nm laser. The counter fragment, CBr2+, is observed when this photolysis laser is unfocused, and photons at 118 nm are used to ionize the radical products. The translational energy distributions of the CBr2+ and Br2+ products can be momentum matched, which indicates that molecular Br2 elimination is one of the primary dissociation channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call