Abstract

The photodissociation dynamics of astrophysically relevant propyl derivatives (C3H7X; X = CN, OH, HCO) at 157 nm exploiting an ultracompact velocity map imaging (UVMIS) setup has been reported. The successful operation of UVMIS allowed the exploration of the 157 nm photodissociation of six (iso)propyl systems─n/i-propyl cyanide (C3H7CN), n/i-propyl alcohol (C3H7OH), and (iso)butanal (C3H7CHO)─to explore the C3H7 loss channel. The distinct center-of-mass translational energy distributions for the i-C3H7X (X= CN, OH, HCO) could be explained through preferential excitation of the low frequency C-H bending modes of the formyl moiety compared to the higher frequency stretching of the cyano and hydroxy moieties. Although the ionization energy of the n-C3H7 radical exceeds the energy of a 157 nm photon, C3H7+ was observed in the n-C3H7X (X = CN, OH, HCO) systems as a result of photoionization of vibrationally "hot" n-C3H7 fragments, photoionization of i-C3H7 after a hydrogen shift in vibrationally "hot" n-C3H7 radicals, and/or two-photon ionization. Our experiments reveal that at least the isopropyl radical (i-C3H7) and possibly the normal propyl radical (n-C3H7) should be present in the interstellar medium and hence searched for by radio telescopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call