Abstract
Dissociation and ionization processes in dimethyl disulfide, CH(3)S(2)CH(3), induced by one- or two-photon absorption of 193 nm light, have been studied using velocity-map ion imaging. The analysis of the ion images of the CH(3)S(2) (+), CH(3)S(+), S(2) (+), and S(+) fragments has allowed the characterization of the scattering dynamics of some of the main photolysis and dissociative-ionization processes. In particular, the experiments corroborate the formation of electronically excited SCH(3)((2)A(1)) products in the 193 nm photodissociation of dimethyl disulfide seen in earlier studies, and show that laser ionization provides a very sensitive method for their detection. The data have also allowed determination of the recoil energy and angular distributions of the CH(3)S(2) (+) and CH(3)S(+) products of the two-photon dissociative-ionization of the CH(3)S(2)CH(3) molecule. The measured distributions for these products are consistent with the formation of a transient parent ion which dissociates after a substantial intramolecular rearrangement, possibly yielding the most stable isomeric forms of the fragments, namely CH(2)S(2)H(+) and CH(2)SH(+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.