Abstract
Photodissociation spectra of Mg+(NH3)n (n=1–4) cluster ions are examined in the wavelength region of 240–1200 nm. From the comparison with the results of ab initio calculations for the structure and the excitation energies of these clusters, the observed absorption bands are assigned to the transitions derived from the P2–2S transition of Mg+ ion. The extensive redshift of the observed spectra is ascribed to the formation of a one-center ion-pair state. In the photolysis of Mg+NH3, NH3+ and Mg+NH2 ions are produced via photoinduced charge transfer and intracluster reaction processes, respectively, in addition to the Mg+ ion generated by the evaporation of ammonia molecules. For n=2, both the intracluster reaction and evaporation are dominant decay processes, while the evaporation is the sole photodissociation channel for larger clusters. The branching fractions of these processes are found to depend strongly on the solvation number n and also on the photolysis wavelength. The energetics and the dynamics of the dissociation processes are discussed in relation to the redox reaction of metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.