Abstract

Experimental data on yields of multiparticle photonuclear reactions (involving the emission of up to seven neutrons from the nucleus involved) on 197Au, 203,205Tl, and 209Bi nuclei in the region extending from the giant dipole resonance to an energy of 67.7 MeV are presented. These data are compared with the results of modern theoretical calculations that take into account both the excitation of a giant dipole resonance (GDR) in a nucleus and the photodisintegration of quasideutrons (QD) in it. By and large, experimental data confirm the results of theoretical calculations—that is, only upon taking simultaneously into account both alternative photodisintegration mechanisms (GDR excitation and QD photodisintegration) can one describe these experimental data. The contribution of QD photodisintegration grows with increasing photon energy and neutron multiplicity and becomes dominant for reactions involving the emission of not less than five neutrons from the nucleus being considered. The integrated cross sections for the processes in question were estimated on the basis of simultaneously employing experimental yields of multinucleon photonuclear reactions and the respective cross-section shapes calculated theoretically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.