Abstract

We present a photodiode-based Chua's chaotic circuit that is controllable by light. The proposed circuit consists of an inductor, two passive capacitors, a photodiode-based variable resistor, and a positive feedback transconductor with negative nonlinearity. The chaotic dynamics of the circuit were verified by using the simulation program with integrated circuit emphasis analysis using the 0.35μm complementary metal-oxide-semiconductor process parameters. The gain results (such as the time waveform, frequency analysis, three-dimensional attractor, bifurcation and Lyapunov exponents diagrams) confirm that the chaotic behavior of the circuit could be controlled by light intensity via the photodiode-based variable resistor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.