Abstract

2D materials are considered to be the most promising materials for photodetectors due to their unique optical and electrical properties. Since the discovery of graphene, many photodetectors based on 2D materials have been reported. However, the low quantum efficiency, large noise, and slow response caused by the thinness of 2D materials limit their application in photodetectors. Here, recent progress on 2D material photodetectors is reviewed, covering the spectrum from ultraviolet to terahertz waves. First the interaction of 2D materials with light is analyzed in terms of optical physics. Then the present methods to improve the performance of 2D material photodetectors are summarized, such as defect engineering, p-n junctions and hybrid detectors, and the issue of serious overestimation of the performance in reported photodetectors based on 2D materials is discussed. Next, a comparison of 2D material photodetectors with traditional commercially available detectors shows that it is difficult to balance the current 2D material photodetectors with regard to having simultaneously both high sensitivity and fast response. Finally, a possible novel EIW mechanism is suggested to advance the performance of 2D material photodetectors in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.