Abstract

We report a photoelectron spectroscopic study of F−(H2O)n (n=1–4) at 193 and 157 nm. In addition to a detachment feature from F−, we observed a higher binding energy feature in all spectra due to ionization of the solvent molecules leading to F−(H2O)n+ charge-transfer states. Detachment of an electron from F− in F−(H2O) reaches the transition state region of the reaction, F+H2O→HF+OH. The bound to non-bound transition resulted in a long tail at the low binding energy side in the photoelectron spectrum of F−(H2O). We estimated that the neutral F⋯H2O complex at the anion geometry, which is near the transition state region of the H-abstraction reaction, is 6±1 kcal/mol above the F+H2O asymptote, consistent with a previous estimation of a 4 kcal/mol entrance barrier height for this reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.