Abstract

Visible-light-driven AgPd/Bi2WO6 nanocomposites containing different atomic ratios of Ag:Pd were studied for photodegradation of rhodamine B (RhB) under visible light irradiation. The AgPd nanoparticles attached on the surface of Bi2WO6 nanoplates were prepared by photoreduction deposition method. Phase, morphology, vibrational mode, chemical composition, valence state and optical absorption were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS), transition electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy. In this study, bimetallic AgPd nanoparticles were fully deposited on top of orthorhombic Bi2WO6 nanoplates. 10% Ag0.9Pd0.1/Bi2WO6 nanocomposites show the highest photodegradation of RhB illuminated by visible radiation. ⋅OH and ⋅O2− are the main radicals that play the role in degrading of RhB over 10% Ag0.9Pd0.1/Bi2WO6 nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call