Abstract
Pyraquinate, a newly developed 4-hydroxyphenylpyruvate dioxygenase class herbicide, has shown excellent control of resistant weeds in paddy fields. However, its environmental degradation products and corresponding ecotoxicological risks after field application remain ambiguous. In this study, we systematically investigate the photolytic behaviors of pyraquinate in aqueous solutions and in response to xenon lamp irradiation. The degradation follows first-order kinetics, and its rate depends on pH and the amount of organic matter. No vulnerability to light radiation is indicated. Ultrahigh-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry and UNIFI software analysis reveals six photoproducts generated by methyl oxidation, demethylation, oxidative dechlorination, and ester hydrolysis. Gaussian calculation suggests that activities due to hydroxyl radicals or aquatic oxygen atoms caused these reactions on the premise of obeying thermodynamic criteria. Practical toxicity test results show that the toxicity of pyraquinate to zebrafish embryos is low but increases when the compound is combined with its photoproducts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.