Abstract

The photodegradation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water by 185 nm vacuum ultraviolet (VUV) light was examined to develop an effective technology to deal with PFOA pollution. PFOA degraded very slowly under irradiation of 254 nm UV light. However, 61.7% of initial PFOA was degraded by 185 nm VUV light within 2 h, and defluorination ratio reached 17.1%. Pseudo first-order-kinetics well simulated its degradation and defluorination. Besides, fluoride ion formed in water, 4 shorter-chain perfluorinated carboxylic acids (PFCAs), that is, perfluoroheptanoic acid, perfluorohexanoic acid, perfluoropentanoic acid, and perfluorobutanoic acid. These were identified as intermediates by LC-MS measurement. These PFCAs consecutively formed and further degraded with irradiation time. According to the mass balance calculation, no other byproducts were formed. It was proposed that PFCAs initially are decarboxylated by 185 nm light, and the radical thus formed reacts with water to form shorter-chain PFCA with one less CF 2 unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.