Abstract

CdTe quantum dots (QDs) were synthesized by 3-mercaptopropionic acid (MPA) and thioglycollic acid (TGA) as capping agents. It is confirmed that TGA and MPA molecules were attached on the surface of the QDs using Fourier transform infrared (FT-IR) spectra. The movement of the QDs in agarose gel electrophoresis indicated that MPA-capped CdTe QDs had small hydrodynamic diameter. The photoluminescence (PL) intensity of TGA-capped QDs is higher than that of MPA-capped QDs at same QD concentration because of the surface passivation of TGA. To systemically investigate the photodegradation, CdTe QDs with various PL peak wavelengths were dispersed in phosphate buffered saline (PBS) and Tris-borate-ethylenediaminetetraacetic acid (TBE) buffer solutions. It was found that the PL intensity of the QDs in PBS decreased with time. The PL peak wavelengths of the QDs in PBS solutions remained unchanged. As for TGA-capped CdTe QDs, the results of PL peak wavelengths in TBE buffer solutions indicated that S(2-) released by TGA attached to Cd(2+) and formed CdS-like clusters layer on the surface of aqueous CdTe QDs. In addition, the number of TGA on the CdTe QDs surface was more than that of MPA. When the QDs were added to buffer solutions, agents were removed from the surface of CdTe QDs, which decreased the passivation of agents thus resulted in photodegradation of CdTe QDs in buffer solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.