Abstract

Hexanitrohexaazaisowurtzitane (HNIW) or CL-20 is a caged structure polycyclic nitramine that may replace RDX and HMX as a common use energetic chemical. To provide insight into the environmental fate of CL-20 we photolyzed the chemical in a Rayonet photoreactor (254-350 nm) and with sunlight in aqueous solutions. Previously, we found that initial photodenitration of the monocyclic nitramine RDX leads to ring cleavage and decomposition. Presently, we found that photolysis of the rigid molecule CL-20 produced NO2-, NO3-, NH3, HCOOH, N2 and N2O. Using LC/MS (ES-) we detected several key intermediates carrying important information on the initial steps involved in the degradation of CL-20. The identities of the intermediates were confirmed using a uniformly ring labeled 15N-[CL-20]. When CL-20 was photolyzed in the presence of H2(18)O, D2O or 18O2 we obtained a product distribution suggesting that the energetic chemical degraded via at least two initial routes; one involved sequential homolysis of N-NO2 bond(s) and another involved photorearrangement prior to hydrolytic ring cleavage and decomposition in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.