Abstract

The use of suspensions of nanoparticles of titanium dioxide in photocatalytic degradation of dye solution has disadvantages of inconvenient separation of fine particles for reuse and limited penetration of light for effective degradation. These problems can be minimized by supporting titanium dioxide on various inert supports. The present study involves the preparation of immobilized titanium dioxide films by three different techniques and characterization of the prepared films. The immobilized films of nanocrystals of titanium dioxide were prepared using sol–gel technique, polyvinyl alcohol–formaldehyde binder and acrylic emulsion. The photocatalytic performance of the prepared films for degradation of amaranth dye has also been evaluated and compared. Combination of photodegradation and adsorption processes induces strong beneficial effects on removal of dyes. Addition of high adsorption capacity activated carbon to photoactive titanium dioxide in photodegradation of dyes improves the efficiency of dye mineralization. The activated carbon has also been immobilized along with titanium dioxide in the present work to examine the dual effect of photodegradation and adsorption in the removal of amaranth. The films formed with the help of polyvinyl alcohol–formaldehyde binder showed better dye degradation capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call