Abstract

Considering that waste incineration fly ash is the main carrier of dioxins and can migrate over long distances in the atmosphere, it is of great significance to study the photochemical transformation behavior of dioxins on the surface of fly ash. In this work, 2-chlorodibenzo-p-dioxin (2-CDD) was selected to conduct a systematic photochemical study. The influence of various factors on the photodegradation of 2-CDD were first explored, and the results showed that small particle size of fly ash, low concentration of 2-CDD and appropriate level of humidity were more conducive to photodegradation, with the highest degradation percentage reaching 76%–84%. The components of fly ash (Zn (Ⅱ), Al (Ⅲ), Cu (Ⅱ) and SiO2) also had a certain promoting effect on the degradation of 2-CDD, which increases the degradation efficiency by 10%–20%, because they could act as effective photocatalysts to produce free radicals for reaction. With a higher total light exposure intensity, natural light environments led to a more complete degradation of 2-CDD than laboratory Xe lamp irradiation (90% degradation Vs. 79% degradation). Based on chemical probe and radical quenching experiment, hydroxyl radical also contributed to 2-CDD photodegradation on fly ash. A total of 16 intermediate products were detected by mass spectrometry analysis, and four initial reaction pathways of 2-CDD were speculated in the process, including dechlorination, ether bond cleavage, hydroxyl substitution, and hydroxyl addition. According to the results of density functional theory calculation, the reaction channels of ether bond cleavage and •OH attack were determined. The toxicity assessment software tool (TEST) was used to assess the toxicity and bioconcentration coefficient of reaction products, and it was found that the overall toxicity of the photodegradation products was reduced. This study would provide new insights into the environmental fate of dioxins during long-range atmospheric migration process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call