Abstract

The degradation of plastics has attracted much attention from the global community. Polyethylenes (PEs), as the most abundant synthetic plastics, are most frequently studied. PE is non-degradable and non-polar because of the sole presence of the pure hydrocarbon components. Concurrent incorporation of both in-chain cleavable and functional groups into the PE chain is an effective pathway to overcome the non-degradable and non-polar issue; however, the method for achieving this pathway remains elusive. Here, we report a strictly non-alternating (>99%) terpolymerization of ethylene with CO and fundamental polar monomers via a coordination-insertion mechanism using late transition metal catalysts, which effectively prevents the formation of undesired chelates originating from both co-monomers under a low CO concentration. High-molecular-weight linear PEs with both in-chain isolated keto (>99%) and main-chain functional groups are prepared. The incorporation of key low-content isolated keto groups makes PEs photodegradable while retaining their desirable bulk material properties, and the introduction of polar functional groups considerably improves their surface properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call