Abstract
In this article, we demonstrate the self-assembly and photoresponive behavior of a novel coumarin-based amphiphilic dendron in both aqueous solution and air-water interface. The dendritic structure, namely C-IG1, was composed of a lipophilic cholesterol and hydrophilic poly(amido amine) (PAMAM) dendron, and the amphiphilic counterpart is interconnected by a photolabile coumarin carbonate ester, enabling the photoinduced degradation of the amphiphiles in protic solvents via SN1-like mechanism. A Nile red solubilization fluorescence assay suggests a low critical aggregation concentration for the micelle formation of C-IG1 in aqueous solutions (3.9 × 10-5 M); the Langmuir analysis further indicates that C-IG1 possesses significant compressibility in air-water interface, eventually forming homogeneous monolayers with a final molecular area (A0) of 36 Å2. Notably, the micelles and Langmuir monolayer are quite stable until photo-triggered dissociation based on the photocleavage of C-IG1 amphiphile activated by 365-nm incident light. Moreover, the transition in interfacial morphology of the Langmuir monolayer during the assembly and photodegradation processes also can be visually analyzed by incorporating Nile red probes with in situ monitoring through fluorescence microscopy. The thin film deposited on a glass substrate by the Langmuir-Blodgett technique also shows a photoresponsive behavior based on the change in the contact angles of a water droplet on the surface upon light stimulation. The binding affinity of C-IG1 and cyclic DNA determined by the fluorescence quenching analysis of the coumarin reporter suggests a ground-state macromolecular complexation process occurring through polyvalent interactions between the pseudodendrimers and biomacromolecules. The ethidium bromide displacement assay further indicates thus dendriplex formation at low nitrogen-to-phosphorous value (N/P < 1) and confirms that the decomplexation accompanied by DNA release can be achieved through an active phototriggered route under spatiotemporal control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.