Abstract

Recent developments have used light-activated channels or transporters to modulate neuronal activity. One such genetically-encoded modulator of activity, channelrhodopsin-2 (ChR2), depolarizes neurons in response to blue light. In this work, we first conducted electrophysiological studies of the photokinetics of hippocampal cells expressing ChR2, for various light stimulations. These and other experimental results were then used for systematic investigation of the previously proposed three-state and four-state models of the ChR2 photocycle. We show the limitations of the previously suggested three-state models and identify a four-state model that accurately follows the ChR2 photocurrents. We find that ChR2 currents decay biexponentially, a fact that can be explained by the four-state model. The model is composed of two closed (C1 and C2) and two open (O1 and O2) states, and our simulation results suggest that they might represent the dark-adapted (C1-O1) and light-adapted (C2-O2) branches. The crucial insight provided by the analysis of the new model is that it reveals an adaptation mechanism of the ChR2 molecule. Hence very simple organisms expressing ChR2 can use this form of light adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.