Abstract

The kinetics of light-driven proton transport by bacteriorhodopsin has been studied in a model system consisting of a planar lipid bilayer membrane to which purple membrane fragments have been attached. After excitation with a 10-nsec laser flash a fast negative current-transient occurs, followed by a positive transient which decays to zero. The time course of the photocurrent may be represented by a sum of four exponentials with time constantsτ1= 1.2μsec,τ2= 17μsec,τ4= 57μsec,τ1= 950μsec (at 25°C). In a D2O mediumτ2 andτ3 are increased by a factor of 2.6 and 2.9, respectively, whereasτ1 remains unaffected. The observed components of the photocurrent can be correlated to photochemical reaction steps inferred from flash-photometric experiments on the basis of the observed time constants, the activation energies, and the effects of pH and D2O. From the photocurrent signals information may be obtained on the magnitude of the charge displacement associated with the elementary transitions of the bacteriorhodopsin molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.