Abstract

The present work reports the investigation of photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production using aqueous solutions containing various organic compounds. Fe2O3 photoanodes were prepared by the electrodeposition method. The efficiency of various metal modifiers of the hematite structure (Ti, Ni, Sn, Co and Cu) has been tested by monitoring the photoelectrochemical behavior of the ensuing photoanodes. Hydrogen production was monitored in an H-shaped reactor using pure and metal-modified hematite films deposited on FTO electrodes as photocatalyst while a combination of commercial carbon paste with dispersed Pt nanoparticles was used as electrocatalyst. In all cases, hydrogen production was obtained by application of a small external electric bias (in the range 0.5- 0.7V vs Ag/AgCl electrode). Highest photocurrent production has been achieved with a Ti-modified Fe2O3 photoanode in the presence of glucose as sacrificial agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.