Abstract

A simple kinetic model concerning photocurrent in epitaxially grown GaN is presented. Utilizing a minimal set of rate equations and kinetic parameters, it is shown that in the presence of hole centers with small probabilities of electron-hole recombinations, the time dependence of photocurrent is ruled by competition between capture of conduction band electrons by deep electron traps and electron-hole recombinations. If the probability of electron capture exceeds that of recombination, the decay of current after excitation is turned off shows the usual persistent photocurrent trend. If, on the contrary, the probability of recombination is larger than that of electron capture, a slow photocurrent quenching, past a maximum, can be observed. In some circumstances, after excitation is turned off, the current drops below the steady dark current, at which point the negative persistent photoconductivity effect comes into play.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call